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Abstract

There has been considerable interest over the last few years
in collecting and analyzing internet traffic data in order toes-
timate quality of service parameters such as packet loss rates
and delay distributions. In this paper, we focus on fast and
efficient estimation methods for network link delay distribu-
tions based on end-to-end measurements obtained by probing
the underlying. We introduce a rigorous statistical framework
for designing the necessary probing experiments and exam-
ine the properties of the proposed estimators. The proposed
framework and the resulting methodology are validated us-
ing data collected on the University of North Carolina (UNC)
local area network.

1 Introduction and Motivation

Over the last decade, computer networks have experienced
an exponential growth in terms of the number of users, the
amount of traffic, and the number and complexity of the ap-
plications. Another important feature of such networks is
their multi-layered structure and the lack of centralized con-
trol; the latter, has enabled service providers to develop and
offer a rich variety of applications and services at different
quality-of-service levels. On the other hand, the decentral-
ized nature of the environment makes it very difficult to as-
sess network performance. Furthermore, traditional queuing
and traffic models do a poor job of capturing the complex-
ity and characteristics of network behavior This has led to
the emergence ofnetwork tomography– an area that uses
activeandpassivetraffic measurement schemes to quantify
the performance of large-scale networks. An increasing body
of literature has appeared that deals with tomography related
problems [1, 2, 3, 4, 5, 6].

In many situations, it is impractical to monitor a large num-
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ber of links directly, due to the fact that it may affect net-
work performance and the difficulty of handling the massive
amounts of generated data. Furthermore, if the network of in-
terest spans several subnets, assistance from one provideris
not enough. For these reasons, active network probing offers a
good alternative. This means injecting small amounts of traf-
fic on a network at easily accessible endpoints (sources) and
monitoring its end-to-end performance as it travels to other
endpoints (receivers). These active measurement schemes
allow one to monitor network performance characteristics,
while at the same time minimally interfering with the net-
work. The challenge is todeconvolvethe end-to-end informa-
tion to make inferences about individual links in the network.

In this paper, we introduce a discrete statistical model fores-
timating link delay distributions based on active probing of
the network. We consider several techniques for fitting this
model. In particular, we focus on the following two issues:
(i) conditions required for the probing experiments that guar-
antee aunique solutionto the deconvolution problem and (ii)
fast estimation techniques that allow frequent monitoringin
short intervals and that also can estimate the probabilities of
large link delays. Our main goal will be to evaluate the model
and estimation scheme using real data collected at the UNC
using Voice-over-IP equipment.

2 Framework

In this section, we discuss the modeling framework used for
solving the active delay tomography problem. Specifically,
we introduce the logical topology used for conducting a to-
mography experiment, the probing schemes employed for ob-
taining the path level delay information, and the stochastic
assumptions underlying the obtained measurements. For ease
of presentation, we focus on single source tomography exper-
iments, although the proposed framework can easily handle
multi-source experiments.

2.1 Topology
We describe a network as a graph with computers, routers,
and hubs serving as nodes and the links between them serving
as edges. Because of our focus on active probing from a single
source, we focus exclusively on representing the network as
a tree: a directed, acyclic graph in which each node except
the source has a single parent. See Figure 1 for an example.
Formally, letT = {V , E} be a tree with node setV and link
setE . The nodes will follow a canonical numbering scheme
starting from the root node 0. Each link will be named after



its terminal node.
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Figure 1: Tree network with notation.

2.2 Experimentation
The data collection is based uponflexicastprobing [2]. This
methodology derives from the desire to combine the identi-
fiability guaranteed by multicast schemes with the more sim-
plistic data and algorithm complexity arising in smaller exper-
iments. The main idea is to probe the receiver set in groups.
In this paradigm, multicast schemes are a special case. A
flexicast scheme consists of experiments involving groups of
receivers of different sizes. Each experiment consists of a
series of probes simultaneously sent to each member of the
group using multicast probing or back-to-back unicast prob-
ing. The observed data for an experiment withk receivers are
a set ofk-tuples of end-to-end delays where each end-to-end
delay is the sum of the delays occurring on each link. The
simultaneous probing induces correlations in the end-to-end
measurements due to the portion of the delay that results from
the shared path.

2.3 Stochastic Assumptions
Consider the traffic traces in Figure 2. One of the striking
features of the data is its heavy-tailed nature, as demonstrated
in the corresponding CCDF plot 2. This feature is often
seen in other types of Internet related traffic such as packet
counts or flow durations. Since delay is linked to packet
counts, the heavy-tailed nature of the distribution does not
come as a surprise. Nevertheless, this must be taken into ac-
count when choosing an appropriate model. This type of be-
havior is consistent across different links and times. Links
and times may exhibit different amounts and magnitudes of
‘spikiness,’ but the overall pattern is very consistent. Our
stochastic model, introduced in [1], will be based on dis-
cretizing the continuous delays based on a common bin size
q. Let Xk ∈ {0, q, 2q, . . . , bq} be the discretized delay ac-
cumulated on linkk whereb is some maximum (for the re-
mainder, we will drop the notational dependence onq). Let
αk(i) = P{Xk = i}. We make two independence assump-
tions. First, we assume that consecutive probes are indepen-
dent of each other. Second, we assume that the delay a probe
experiences along one link is independent of the delay it ex-
periences along any other link. This model makes no shape
assumptions making it ideal for the type of data that we see.
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Figure 2: Traffic traces of end-to-end delay collected on the UNC
LAN and a corresponding CCDF plot.

Despite this nonparametric component, each link delay still
follows a multinomial distribution, which in turn allows stan-
dard estimation tools to be extended in a fairly straightforward
manner.

The actual observation made on some receiver noder is Yr =
X1 + . . . + Xr. This is the sum of the link delays along the
path from the source to the receiver. The goal is the estimate
~α based upon these end-to-end measurements.

2.4 Identifiability
With our modeling framework set, we can turn to our first
result which describes how to design probing experiments on
a tree in order to guarantee the estimation of the discrete delay
model.

Proposition 1 Let C be a collection of probing experiments
andT be a general tree network topology. For every internal
nodes ∈ T , let there be at least onec ∈ C such thatc probes
at least two receivers ands is a branching node forc. For
each receiverr, let there be at least onec ∈ C such that
c coversr. These conditions are necessary and sufficient to
guarantee thatC identifies the discrete delay distribution for
every link inT .

A detailed proof is given in [2]. The key concept is that the
grouped probing leads to correlated end-to-end results. The
correlations provided information about the shared paths.By
using all internal nodes as branching points, we get shared-
path information from the source to every internal node.

3 Estimation Methodology

This section will describe procedures for fitting the above
model. We will start with a brief description of maximum



likelihood estimation (MLE) and then move on to two exten-
sions of this procedure: local MLEs and large delay estima-
tion.

3.1 Maximum Likelihood
The discrete, nonparametric modeling framework results in
multinomial outcomes for the path-level experiments. Our
observations consist of the number of times that each individ-
ual outcome~y was observed from the set of outcomesYc for
a given experiment. We denote these countsN c

~y . Consider
the likelihood equation:

l(~α;Y) =
∑

c∈C

∑

~y∈Yc

N c
~y log[γc(~y; ~α)], (1)

whereγc(~y; ~α) is a path-level probability. This equation is
difficult to maximize directly. However, due to the inverse
nature of the problem, it corresponds to a missing data prob-
lem; if the counts for the unobserved link delays were known,
the maximization would be fairly straightforward as the link
outcomes are also simple multinomial experiments. As a re-
sult, the expectation-maximization (EM) algorithm is a nat-
ural candidate in the present setting for computing the max-
imum likelihood estimates. Only the the sufficient statistics
for each link need to be computed: the counts for the num-
ber of times thatXk took on each value. The E-step can be
broken into two parts. Assume that we have some parame-
ter vector~α(z−1). First, we compute the expected number of
times each link delay vector,~x, occurred.

N
c (z)
~x

=
P{ ~Xc = ~x}(z−1)

P{~Y c = ~y(~x)}(z−1)
N c

~y (2)

Then, we use these values to compute the number of times
that probes on linkk had a delay ofi units.

M
(z)
k,i =

∑

c∈C:k∈T c

∑

~x∈X c:xk=i

N
c (z)
~x

(3)

We also need to keep track ofmk which is the total number
of probes that crossed linkk. The M-step is quite simple once
the sufficient statistics have been imputed.

αk(i)(z) =
1

mk

M
(z)
k,i (4)

The computationally challenging aspect in our setting is to
partition the observed end-to-end delays into the set of pos-
sible link delay combinations. The details of this procedure
are covered in [2]. We note that this differs from previous
estimators in two ways. First, the estimator is built for the
flexicast probing of which multicast is a special case. Fur-
ther, the maximum likelihood approach has advantages with
regard to efficiency. Thus the MLE presented here results in
more precise estimates for multicast data than previous pro-
cedures.

The maximum likelihood estimates can be shown to pos-
sess all the desirable statistical properties; namely, they are
strongly consistent, asymptotically normal and fully efficient.

We consider next the complexity of an EM iteration. We start
by looking at a single experiment. There areb|T

c| link de-
lay outcomes for this experiment. For each of these, there
are|T c| multiplications to compute the probability of the link
delay outcome. There is also a single addition to tally up
the end-to-end probabilities and a single division to compute
the conditional probability of each outcome given the end-
to-end outcome. Finally, there are|T c| additions to tally up
the sufficient statistics. Overall, this gives usO{b|T

c|} oper-
ations. The largest subtree sets the complexity for the E-step
atO{b|T

l|} wherel is the largest experiment. The M-step is
trivial consisting of|Eb| divisions.

Given the exponential complexity of this algorithm, another
approach is desirable, especially when one is interested in
monitoring the quality of several links in real time. In the
next subsection, we consider a faster algorithm based upon
estimating the delay distributions through maximum likeli-
hood of appropriately chosen sub-trees and then combining
the results.

3.2 Grafting
We consider an alternative to the full EM: computing the lo-
cal MLE on the subtrees and combining the results in a pro-
cess called peeling (so called because we will use a path-level
distribution and the distribution of a subpath to solve for,or
peel away, the distribution for the other subpath). We call
this combination of trees grafting. In essence, we treat each
experiment as a multicast experiment on the probing subtree.
We use the EM algorithm to solve for the MLE of the logical
links on this subtree and then peel to get estimates for individ-
ual links. For collections of bicast (where probing packetsare
sent to two receiver nodes) and unicast (one receiver node)
experiments, this scheme scales very well because the EM al-
gorithm is applied to a series of three-link, two-layer trees.
Based on numerical experiments considered in [2], increas-
ing the number of bins on a the links increases the average
iterations approximately linearly while adding links increases
the required iterations exponentially. This local scheme takes
advantage of this fact by trading links for bins.

We will explain the details using just bicast and unicast ex-
periments. First, consider a bicast experiment and the subtree
that it probes. Let the trunk havet links and the branches
havel1 and l2 links respectively. The subtree has just three
logical links with varying numbers of bins on each: the trunk
hast(b+1) bins and the branches havel1(b+1) andl2(b+1)
bins. We apply the EM algorithm to this logical subtree and
solve for its MLE. This is done for all of the experiments.

Individual links can be identified in several ways. We will
discuss top-down peeling. Because the same identifiability
conditions apply, at least one pair must split at node 1 and
at least one of the local MLEs must give us an estimate for
link 1. At least one experiment gives us the local MLE for
the path from the root node to every child of node 1. The
individual links can then by identified through peeling. This
process continues down the tree identifying each link. The re-



ceivers covered by bicast experiments can be identified as the
branches in a subtree or by peeling from the branches. The re-
ceivers covered by only unicast experiments can be identified
by peeling.

For this scheme, we favor a more sophisticated peeling mech-
anism than previously discussed. A better fixed-point type al-
gorithm arises from postulating an EM algorithm using imag-
inary data. Imagine that we sendn probes across the path.
Form data by settingnd = nπ0,2(d). The data are counts of
the number of times delayd was observed on the path for all
possibled In the E step, we want to computeMi, the expected
number of times that delayi was seen on the unknown link.
After thez-th iteration, this is given by:

M
(z+1)
i =

b∑

j=0

α
(z)
2 (i)α1(j)

π
(z)
0,2(i + j)

ni+j , (5)

where~π(z)
0,2 is updated with each update of~α

(z)
2 . Note that this

is not the quantity used to generate the data. Since we ob-
tain our estimates by dividingMi by n, we get the following
equation:

α2(i)
(z+1) =

b∑

j=0

α
(z)
2 (i)α1(j)

π
(z)
0,2(i + j)

π0,2(i + j). (6)

This equation is no longer based on our imaginary data and
can be run until~α2 approaches its fixed point. Unlike the
previously mentioned scheme, this peeling function uses all
of the information from the two known distributions.

If multiple estimates are available for a link delay distribu-
tion, they can be combined in various ways. Simple averaging
is one. A better method is weighted averaging based on the
number of observations. Thus, if we have two estimates of~α1

from experimentsc1 andc2, we can combine them to get

~̃α1 =
nc1~αc1 + nc2~αc2

nc1 + nc2

(7)

The grafting procedure also has several desirable asymptotic
properties. It is consistent and asymptotically normal, but it is
not as efficient as the complete MLE. A more thorough treat-
ment of both the MLE and the grafting procedure is contained
in [2]. This paper also includes comparisons with other work.

3.3 Large Delay Estimation
Among the advantages of the discrete delay model and its es-
timation schemes is the ability to quickly estimate the prob-
ability of large delays. This information is very important
for capacity planning and performance estimation for appli-
cations like Voice-Over-IP (VoIP) telephony. By setting the
bin sizeq to be some large delay of interest, such as a detri-
mental threshold for VoIP quality, this framework can be eas-
ily used to estimate the probability of a deteriorating quality
of service on each link. This model can usually be quickly
estimated since most of the mass is expected to be in the first

(or zero) bin. This process is equivalent in some ways to tail
estimation.

In addition to solving a specific problem, using this proce-
dure improves speed in two ways. First, it reduces the em-
pirical estimate of the max delayb: larger bin sizes lead to
fewer bins. Additionally, this procedure takes advantage of
the above complexity calculation. The complexity of the EM
algorithm in the worst-case scenario is based upon observing
at least one value for every possible end-to-end delay. Using
a large bin size collapses the observations. For example, un-
der a certain bin size, the bulk of observations at some pair
might range from (0,0) to (5,5) thus requiring the estimation
scheme to operate on 36 bins. Increasing the bin size by a
factor of six collapses all of those bins into a single (0,0) ob-
servation while likely leaving the extreme delay from the tails
as individual observations. Thus, we obtain significant com-
putational gains.

4 Design of Probing Experiments

The importance of the identifiability condition previously
mentioned is that it provides us with a set of conditions to
constructa collection of probing experiments thatprovably
identifies the individual link delay distributions. We describe
next such a procedure, based on the set covering problem.
For ease of presentation we restrict attention to a collection
comprised of bicast and unicast schemes. LetB andU de-
note the set ofall possible bicast and unicast schemes, re-
spectively, for a given topologyT with edge setE . Every
schemeδ ∈ B∪U can be represented by a vectorxδ of length
|V|−1 with elementsxδ

i ∈ {0, 1}, where a 1 indicates that the
scheme traverses nodei and a0 that it does not. For example,
the correspondingx vector for the bicast scheme〈2, 3〉 for the
topology shown in Figure 1 is

x〈2,3〉 = [111000000000000]′.

We can then posit the following integer program, with deci-
sion variablesξ

minimize
∑

δ∈B∪U

ξδ (8)

s.t.
∑

δ∈B

xδ
jξ

δ ≥ 1, j ∈ I (9)

∑

δ∈B∪U

xδ
jξ

δ ≥ κ, j ∈ V − {0} (10)

ξδ ∈ {0, 1}

The first constraint captures the condition in Proposition 1
that every internal node needs to correspond to the splitting
node of some bicast scheme, while the second constraint indi-
cates that every node in the tree must be covered at leastκ ≥ 1
times. In the statement of the Propositionκ = 1, but for vari-
ous reasons we may want to allow each link to be covered by
multiple probing experiments. Notice that we can modify the



last constraint and can require differential coverage for differ-
ent links of the tree. Finally, it is worth noting that similar
ideas can be used for multi-source network topologies.

5 Analysis of UNC Network Traffic

5.1 Large Delay Analysis
The University of North Carolina is currently engaged in test-
ing their network for Voice-Over-IP readiness. As part of this
test, Avaya Labs has supplied them with a system for simu-
lating phone calls over their computer network. The system
is able to collect packet level information to synchronize ma-
chine clocks and compute one-way delays. This provides a
unique opportunity to implement the above methods while
helping UNC to evaluate their network. The system has 15
endpoints. For our proof-of-concept tests, we organize them
into the tree shown in Figure 3. Node 1 is the main campus
router and it connects to the University gateway. Nodes 2, 3,
and 9 are also large routers responsible for different portions
of the campus. The accessible nodes are all located in dorms
and other university buildings. We root the tree at Sitterson
Hall which houses the computer science department.
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14:  Craige
15:  Smith
16:  Greenlaw
17:  South Bldg
18:  Phillips Machine Room

Figure 3: UNC Local Area Network.

The present study involves the use of a single source for pre-
sentation purposes. The methodology presented can be easily
extended to multi-source probing and this is the subject of
current investigation. A more complete analysis of this net-
work would naturally involve probing the network from each
of the endpoints.

The testing equipment simulates phone calls between end-
points. Although we cannot use the multicast protocol, simu-
lating simultaneous phone calls creates an appropriate back-
to-back mechanism: the two packets making up the back-to-
back pair are sent within nanoseconds of each other. Propaga-
tion delay was removed by subtracting the minimum observed
delay along each path from all of the delays collected along
that path. As a general experimental protocol, we probe the
network in pairs using the following experiments:

C = {〈4, 5〉, 〈6, 7〉, 〈8, 10〉, 〈11, 12〉, 〈13, 14〉, 〈15, 16〉, 〈17, 18〉}.

This set of experiments satisfies the posited identifiability
condition. A single probing session consists of two passes

through the collection of experiments sending about 500
probes to each pair in a single pass. We conducted exper-
iments over the course of several days in order to evaluate
both the network and the methodology.

The experiments presented here were conducted on March 1,
17, and 21 of 2005 (there exists a significantly larger col-
lection of similar data, whose analysis confirms the consis-
tency of our results). The first date should be a fairly typical
Tuesday. The second date is during Spring Break. The last
date is the first Monday after Spring Break. On 3/1 and 3/17
we have collections at 9:00am, 12:00pm, 3:00pm, 6:00pm,
and 9:00pm. On 3/21, we have data for 8:00am, 10:00am,
12:00pm, 2:00pm, 4:00pm, 6:00pm, 8:00pm, 10:00pm, and
12:00am. For all three days, we choose a bin size ofq =
.0001s. This bin size, while somewhat arbitrary, was selected
since it is a large delay on this network and several delays
of this magnitude can lead to a noticeable degradation in call
quality. This is an example of choosing a large bin size in
order to estimate the probability of a troublesome delay. The
goal is assess the quality of the network upgrade it where nec-
essary. While a more detailed analysis, using a finer grained
bin would provide better estimates of the mean and variance
of link delays, the most detrimental factor is large delay so
we make that our focus. We expect most of the mass to fall
on the zero bin, but are interested in how much lies beyond.
From this analysis, we construct a picture of the probability
of large delay (greater than or equal to one unit) throughout
the course of the day: Figures 4, 5, and 6.

9 12 15 19 21
0

0.05

0.1
Sitterson

9 12 15 19 21
0

0.05

0.1
core to core

9 12 15 19 21
0

0.05

0.1
core to core

9 12 15 19 21
0

0.05

0.1
Venable

9 12 15 19 21
0

0.05

0.1
Davis

9 12 15 19 21
0

0.05

0.1
McColl

9 12 15 19 21
0

0.05

0.1
Tarrson

9 12 15 19 21
0

0.05

0.1
Rosenau

9 12 15 19 21
0

0.05

0.1
core to core

9 12 15 19 21
0

0.05

0.1
ULib

9 12 15 19 21
0

0.05

0.1
Everett

9 12 15 19 21
0

0.05

0.1
Old East

9 12 15 19 21
0

0.05

0.1
Hinton

9 12 15 19 21
0

0.05

0.1
Craige

9 12 15 19 21
0

0.05

0.1
Smith

9 12 15 19 21
0

0.05

0.1
Greenlaw

9 12 15 19 21
0

0.05

0.1
South

9 12 15 19 21
0

0.05

0.1
Phillips

Figure 4: Probability of large delay on 3/1/2005.

This analysis is revealing in a number of ways. First, many
buildings (Venable, Davis, Rosenau, Smith, Greenlaw, and
South) show a typical diurnal pattern. Each of these buildings
is administrative or departmental meaning that the majority of
users follow a regular 9 to 5 schedule. Other buildings show
a somewhat different pattern; either, a more uniform through-
out the day or even an opposite one. Hinton, for example,
is a large freshman dorm and thus the drop during the day
and increase at night are expected as the residents return from
classes and other activities in the evening. This is instructive
for several reasons. It provides an indirect method of vali-
dation. The estimation procedure is locating patterns thatwe
expect to see. This is a strong indication that the methodol-
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Figure 5: Probability of large delay on 3/17/2005.
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Figure 6: Probability of large delay on 3/21/2005.

ogy uncovers patterns witnessed in other studies of local area
networks.

A second measure of validation is found by comparing the
dorm activity before, during, and after Spring Break. Everett,
Old East, Hinton, and Craige are dorms. The second collec-
tion of data taken during Spring Break reveals almost no large
delays in three out of four of these buildings. This is an ex-
pected outcome as most of the dorm population was absent
during that period. The other buildings also show reduced
large delays. The Hinton dorm is especially interesting, since
it experienced very little congestion over the break, but a sig-
nificant increase to pre-break levels on the first day back. The
ability to track a known campus event again provides a strong
indication of the methodology’s success. Finally, the results
exhibit a strong degree of consistency. Many of the moni-
tored buildings show similar patterns during the three collec-
tion times. Furthermore, these patterns are in agreement with
previous data collections examined elsewhere [2].

Active probing also allows us to evaluate the quality of the
network. Many of the building links would probably re-
quire upgrades in order to support delay sensitive applica-
tions. Some of the departmental and administration buildings
(Smith and South) show a tendency to have large delays even
without additional traffic. Further, one of the interior core-to-
core links shows some propensity to large delays, which may

propagate to large sections of the campus network.

5.2 Detailed Analysis
Capacity planning problems also rely on good knowledge of
sample summaries like the mean, median, and variance. To
estimate these well, a finer grained solution is required. To
demonstrate the effectiveness of the methodology for produc-
ing this type of solution, we repeated the analysis for 3/1 us-
ing a bin size 10 times smaller than above. Figure 7 contains
the partial results of this analysis. These figures have the first
20 bins of the distribution for links 9, 13, and 17 correspond-
ing to a core-to-core link, a dorm link, and a departmental
link. The more detailed distributions can be used to compute
means and variances. The median can be located or bounded
quite easily by simply examining the distributions. Further,
the complete distributions demonstrate the same diurnal pat-
terns seen above. For example, the distributions for link 17
are much more clustered at the lower levels after the work
day is complete.
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Figure 7: Distribution for 3 links throughout 3/1 using a bin size
.00001s.

6 Concluding Remarks

We have discussed several aspects of the network tomogra-
phy problem. First, we have introduced a suitable model-
ing framework that is appropriate for capturing the unique
aspects of bursty network traffic. Additionally, several esti-
mation schemes are presented that focus on fast estimation
and estimation for large delays. Finally, as a demonstration
of these techniques we have presented a real data analysis.
Such analysis is still fairly novel in the area of active tomog-
raphy as the tools for collection are not yet widely available.
Based on this analysis, we have strong reason to believe that
the methodology presented is a useful tool for assessing and
monitoring network performance.
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[1] R. Cáceres, N. G. Duffield, J. Horowitz, and D. F.
Towsley. Multicast-based inference of network-internal loss



characteristics.IEEE Transactions on Information Theory,
45(7):2462–2480, November 1999.

[2] E. Lawrence, G. Michailidis, and V. N. Nair. Flexicast
delay tomography.Journal of the Royal Statistical Society
Series B, 2005. Submitted.

[3] G. Liang and B. Yu. Maximum pseudo likelihood esti-
mation in network tomography.IEEE Transactions on Signal
Processing, 51(8):2043–2053, August 2003.

[4] F. Lo Presti, N. G. Duffield, J. Horowitz, and
D. Towsley. Multicast-based inference of network-internal
delay distributions. IEEE Transactions on Networking,
10(6):761–775, December 2002.

[5] Y. Tsang, M. Coates, and R. D. Nowak. Network de-
lay tomography. IEEE Transactions on Signal Processing,
51(8):2125–2135, August 2003.

[6] Y. Zhang, M. Roughan, C. Lund, and D. Donoho. An
information-theoretic approach to traffic matrix estimation. In
ACM SIGCOMM 2003, 2003.


